
Stateflow®

Reference

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® Reference
© COPYRIGHT 2006–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2006 Online only New for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release R2006b)
September 2007 Online only Rereleased for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Rereleased for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Rereleased for Version 7.5 (Release 2010a)
September 2010 Online only Rereleased for Version 7.6 (Release 2010b)
April 2011 Online only Rereleased for Version 7.7 (Release 2011a)
September 2011 Online only Rereleased for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)

Contents

Functions — Alphabetical List
1

Block Reference
2

v

1

Functions — Alphabetical List

1 Functions — Alphabetical List

sfclipboard
Stateflow clipboard object

Syntax
object = sfclipboard

Description

object = sfclipboard returns a handle to the Stateflow® clipboard object, which you
use to copy objects from one chart or state to another.

Examples
Copy the init function from the Init chart to the Pool chart in the sf_pool model:

sf_pool;

% Get handle to the root object

rt = sfroot;

% Get handle to 'init' function in Init chart

f1 = rt.find('-isa','Stateflow.EMFunction','Name','init');

% Get handle to Pool chart

chP = rt.find('-isa','Stateflow.Chart','Name','Pool');

% Get handle to the clipboard object

cb = sfclipboard;

% Copy 'init' function to the clipboard

cb.copy(f1);

% Paste 'init' function to the Pool chart

cb.pasteTo(chP);

% Get handle to newly pasted function

f2 = chP.find('-isa','Stateflow.EMFunction','Name','init');

% Reset position of new function in the Pool chart

f2.Position = [90 180 90 60];

More About
• “Getting a Handle on Stateflow API Objects”

1-2

 sfclipboard

• “Access the Chart Object”

See Also
sfgco | sfnew | sfroot | stateflow

Introduced before R2006a

1-3

1 Functions — Alphabetical List

sfclose
Close chart

Syntax

sfclose

sfclose('chart_name')

sfclose('all')

Description

sfclose closes the current chart.

sfclose('chart_name') closes the chart called 'chart_name'.

sfclose('all') closes all open or minimized charts. 'all' is a literal character
vector.

See Also
sfnew | sfopen | stateflow

Introduced in R2006a

1-4

 sfdebugger

sfdebugger
Open Stateflow Debugger

Syntax

sfdebugger

sfdebugger('model_name')

Description

sfdebugger opens the Stateflow Debugger for the current model.

sfdebugger('model_name') opens the debugger for the Simulink® model called
'model_name'. Use this input argument to specify which model to debug when you have
multiple models open.

More About
• “Debug Run-Time Errors in a Chart”

See Also
sfexplr | sfhelp | sflib

Introduced in R2006a

1-5

1 Functions — Alphabetical List

sfexplr
Open Model Explorer

Syntax

sfexplr

Description

sfexplr opens the Model Explorer. A model does not need to be open.

More About
• “Use the Model Explorer with Stateflow Objects”

See Also
sfdebugger | sfhelp | sflib

Introduced in R2006a

1-6

 sfgco

sfgco
Recently selected objects in chart

Syntax

object = sfgco

Description

object = sfgco returns a handle or vector of handles to the most recently selected
objects in a chart.

Output Arguments

object

Handle or vector of handles to the most recently selected objects in a chart

Empty matrix No charts are open, or you have no edited
charts.

Handle to the chart most recently clicked You clicked in a chart, but did not select
any objects.

Handle to the selected object You selected one object in a chart.
Vector of handles to the selected objects You selected multiple objects in a chart.
Vector of handles to the most recently
selected objects in the most recently
selected chart

You selected multiple objects in multiple
charts.

Examples

Zoom in on a state after clicking it:

myState = sfgco;

1-7

1 Functions — Alphabetical List

% Zoom in on the selected state

myState.fitToView;

More About
• “Getting a Handle on Stateflow API Objects”
• “Zoom a Chart Object Using the API”

See Also
sfnew | sfroot | stateflow

Introduced before R2006a

1-8

 sfhelp

sfhelp
Open Stateflow online help

Syntax

sfhelp

Description

sfhelp opens the Stateflow online help in the MATLAB® Help browser.

See Also
sfdebugger | sfexplr | sfnew | stateflow

Introduced before R2006a

1-9

1 Functions — Alphabetical List

sflib
Open Stateflow library window

Syntax

sflib

Description

sflib opens the Stateflow block library. From this library, you can drag Stateflow blocks
into Simulink models and access the Stateflow Examples Library.

See Also
sfdebugger | sfexplr | sfhelp | sfnew

Introduced in R2006a

1-10

 sfnew

sfnew
Create model containing empty Stateflow block

Syntax

sfnew

sfnew('chart_type')

sfnew('model_name')

sfnew('chart_type','model_name')

Description

sfnew creates an untitled model with an empty chart. Stateflow sets the default action
language for new charts to MATLAB. To change the default action language to C, use the
command sfpref('ActionLanguage','C'). For more information, see “Modify the
Action Language for a Chart”.

sfnew('chart_type') creates an untitled model that contains an empty block of type
chart_type.

sfnew('model_name') creates a model called model_name with an empty chart with
the default action language.

sfnew('chart_type','model_name') creates a model called model_name with an
empty block of type chart_type.

Input Arguments

chart_type

Empty block to add to an empty model:

-MATLAB Use a chart that supports MATLAB
expressions in Stateflow actions

1-11

1 Functions — Alphabetical List

-C Use a chart that supports C expressions
in Stateflow actions

-Mealy Use a chart that supports only Mealy
state machine semantics

-Moore Use a chart that supports only Moore
state machine semantics

-TT Use a truth table
-STT Use a state transition table

model_name

Name of the model.

Examples

Create a untitled model with an empty chart that uses MATLAB as the action language:

sfnew()

Create a model called MyModel with an empty chart that uses only Mealy semantics:

sfnew('-Mealy','MyModel')

Create a model called MyModel with an empty chart that uses only Moore semantics:

sfnew('-Moore','MyModel')

More About
• “Model Event-Driven System”
• “Create Mealy and Moore Charts”
• “Build Model with Stateflow Truth Table”
• “Syntax for States and Transitions”

See Also
sfhelp | sfprint | sfroot | sfsave | stateflow

1-12

 sfnew

Introduced before R2006a

1-13

1 Functions — Alphabetical List

sfopen
Open existing model

Syntax

sfopen

Description

sfopen prompts you for a model file and opens the model that you select from your file
system.

See Also
sfclose | sfdebugger | sfexplr | sflib | sfnew | stateflow

Introduced in R2006a

1-14

 sfprint

sfprint

Print graphical view of charts

Syntax

sfprint

sfprint(objects)

sfprint(objects,format)

sfprint(objects,format,outputOption)

sfprint(objects,format,outputOption,wholeChart)

Description

sfprint prints the current chart to the default printer.

sfprint(objects) prints all charts specified by objects to the default printer.

sfprint(objects,format) prints all charts specified by objects in the specified
format to output files. Each output file matches the name of the chart and the file
extension matches the format.

sfprint(objects,format,outputOption) prints all charts specified by objects in
the specified format to the file or printer specified in outputOption.

sfprint(objects,format,outputOption,wholeChart) prints all charts specified
by objects in the specified format to the file or printer specified in outputOption. As
specified in wholeChart, prints either a complete or current view.

Examples

Print open chart

sfprint

1-15

1 Functions — Alphabetical List

Prints current chart to the default printer.

Print all charts specified in path

sfprint('sf_car/shift_logic');

Prints the chart with the path ‘sf_car/shift_logic’ to the default printer.

Print chart specified in path to a JPG file format.

sfprint('sf_car/shift_logic','jpg')

Prints a copy of the chart ‘sf_car/shift_logic’ in JPG format to the file
‘sf_car_shift_logic.jpg’.

Print chart in TIFF format to the clipboard.

sfprint(gcs,'tif','clipboard')

Prints the chart in the current system to the clipboard in TIFF format.

Print the current view of a chart.

sfprint('sf_car/shift_logic','png','file',0)

Prints the current view of ‘sf_car/shift_logic’ in a PNG format to the file
‘sf_car_shift_logic.png’.

Input Arguments

objects — Identifier of charts to print
gcb (default) | gcs | character vector

Identifier of charts to print. Use:

• gcb to specify the current block of the model.
• gcs to specify the current system of the model.
• a character vector to specify the path of a chart, model, subsystem, or block.

Example: sfprint(gcs)

Prints all the charts in the current system to the default printer.

1-16

 sfprint

Example: sfprint('sf_pool/Pool')

Prints the complete chart with the path 'sf_pool/Pool' to the default printer.

format — Output format of printed charts
'bitmap' | 'jpg' | 'meta' | 'pdf' | 'png' | 'svg' | 'tif'

Output format of the printed charts specified as one of these values:

'bitmap' Save the chart image to the clipboard as a
bitmap (for Windows® operating systems
only)

'jpg' Generate a JPEG file
'meta' Save the chart image to the clipboard as a

metafile (for Windows operating systems
only)

'pdf' Generate a PDF file
'png' Generate a PNG file
'svg' Generate an SVG file
'tif' Generate a TIFF file

Example: sfprint('sf_car/shift_logic','jpg')

Prints the complete chart with the path 'sf_car/shift_logic' in a JPEG format to a
file in the current folder named 'sf_car_shift_logic.jpg'.

Data Types: char

outputOption — Name of the printer or output file
'file' (default) | character vector | 'clipboard' | 'promptForFile' | 'printer'

Name of the output file or printer specified as one of these values:

'file' Send output to a default file with the name
chart_name.file_extension. The file
name is the name of the chart, with an
extension that matches the output format.

character vector Specify the name of the output file with a
character vector.

1-17

1 Functions — Alphabetical List

'clipboard' Copy output to the clipboard
'promptForFile' Prompts the user interactively for path and

file name.
'printer' Send output to the default printer (use only

with 'ps', or 'eps' formats)

Example: sfprint('sf_car/shift_logic','png','myFile')

Prints the complete chart whose path is 'sf_car/shift_logic' in the PNG format to
a file in the current folder with the name 'myFile'.png.

Example: sfprint('sf_car/shift_logic,'pdf','promptForFile')

Prints all charts in the current block of the model in PDF format. A dialog box opens for
each chart to prompt you for the path and name of the output file.
Data Types: char

wholeChart — View of charts to print
1 (default) | 0

View of charts to print specified as a integer of value 0 or 1. A value of 1 prints the
complete views of all the charts, whereas a value of 0 prints the current views of all the
charts.
Example: sfprint(gcs,'png','file',0)

Prints the current view of all charts in the current system in PNG format using default
file names.

See Also
gcb | gcs | sfhelp | sfnew | sfsave | stateflow

Introduced before R2006a

1-18

 sfroot

sfroot
Root object

Syntax

object = sfroot

Description

object = sfroot returns a handle to the top-level object in the Stateflow hierarchy of
objects. Use the root object to access all other objects in your charts when using the API.

Examples

Zoom in on a state in your chart:

old_sf_car;

% Get handle to the root object

rt = sfroot;

% Find the state with the name 'first'

myState = rt.find('-isa','Stateflow.State','Name','first');

% Zoom in on that state in the chart

myState.fitToView;

More About
• “Getting a Handle on Stateflow API Objects”
• “Access the Chart Object”

See Also
sfclipboard | sfgco

Introduced before R2006a

1-19

1 Functions — Alphabetical List

sfsave

Save chart in current folder

Syntax

sfsave

sfsave('model_name')

sfsave('model_name','new_model_name')

sfsave('Defaults')

Description

sfsave saves the chart in the current model.

sfsave('model_name') saves the chart in the model called 'model_name'.

sfsave('model_name','new_model_name') saves the chart in 'model_name' to
'new_model_name'.

sfsave('Defaults') saves the settings of the current model as defaults.

The model must be open and the current folder must be writable.

Examples

Develop a script to create a baseline chart and save it in a new model:

bdclose('all');

% Create an empty chart in a new model

sfnew;

% Get root object

rt = sfroot;

1-20

 sfsave

% Get model

m = rt.find('-isa','Simulink.BlockDiagram');

% Get chart

chart1 = m.find('-isa','Stateflow.Chart');

% Create two states, A and B, in the chart

sA = Stateflow.State(chart1);

sA.Name = 'A';

sA.Position = [50 50 100 60];

sB = Stateflow.State(chart1);

sB.Name = 'B';

sB.Position = [200 50 100 60];

% Add a transition from state A to state B

tAB = Stateflow.Transition(chart1);

tAB.Source = sA;

tAB.Destination = sB;

tAB.SourceOClock = 3;

tAB.DestinationOClock = 9;

% Add a default transition to state A

dtA = Stateflow.Transition(chart1);

dtA.Destination = sA;

dtA.DestinationOClock = 0;

x = sA.Position(1)+sA.Position(3)/2;

y = sA.Position(2)-30;

dtA.SourceEndPoint = [x y];

% Add an input in1

d1 = Stateflow.Data(chart1);

d1.Scope = 'Input';

d1.Name = 'in1';

% Add an output out1

d2 = Stateflow.Data(chart1);

d2.Scope = 'Output';

d2.Name = 'out1';

% Save the chart in a model called "NewModel"

% in current folder

sfsave('untitled','NewModel');

Here is the resulting model:

1-21

1 Functions — Alphabetical List

Here is the resulting chart:

More About
• “Create a MATLAB Script of API Commands”

See Also
sfopen | sfclose | sfroot | sfnew | find

Introduced before R2006a

1-22

 stateflow

stateflow
Create empty chart

Syntax

stateflow

Description

stateflow creates an untitled model that contains an empty chart. The function also
opens the Stateflow block library. From this library, you can drag Stateflow blocks into
models or access the Stateflow Examples Library.

See Also
sflib | sfnew

Introduced before R2006a

1-23

2

Block Reference

2 Block Reference

Chart
Implement control logic with finite state machine

Library

Stateflow

Description

A finite state machine is a representation of an event-driven (reactive) system. In an
event-driven system, the system responds to an event by making a transition from one
state (mode) to another. This action occurs as long as the condition defining the change is
true.

A Stateflow chart is a graphical representation of a finite state machine. States and
transitions form the basic elements of the system. You can also represent stateless flow
charts.

For example, you can use Stateflow charts to control a physical plant in response to
events such as a temperature and pressure sensors, clocks, and user-driven events.

You can also use a state machine to represent the automatic transmission of a car. The
transmission has these operating states: park, reverse, neutral, drive, and low. As the
driver shifts from one position to another, the system makes a transition from one state
to another, for example, from park to reverse.

A Stateflow Chart can use MATLAB or C as the action language to implement control
logic.

This block diagram represents a machine on an assembly line that feeds raw material
to other parts of the line. It contains a chart, Feeder, with MATLAB as the action
language.

2-2

 Chart

If you double-click the Feeder block in the model, the chart appears.

2-3

2 Block Reference

For a tutorial on this model, see “Model Event-Driven System”.

Data Type Support

The Chart block accepts input signals of any data type that Simulink supports, including
fixed-point data and enumerated data types. For a description of data types that
Simulink supports, refer to the Simulink documentation.

2-4

 Chart

Floating-point inputs pass through the block unchanged. Boolean inputs to charts that
use MATLAB as the action language pass directly as Boolean outputs. Boolean inputs to
charts that use C as the action language are treated as double type.

You can declare local data of any type or size.

Parameters

For a description of the block parameters, see the Subsystem block reference page in the
Simulink documentation.

Characteristics

Direct Feedthrough Yes, for Classic and Mealy charts.

No, for Moore charts.
Sample Time Specified in the Sample time parameter
Scalar Expansion N/A
Dimensionalized Yes
Zero-Crossing Detection Yes, if enabled for continuous-time

systems.

For more information, see “When to Enable
Zero-Crossing Detection”.

Introduced in R2013b

2-5

2 Block Reference

Message Viewer
Display message or events between blocks during simulation

Library

Stateflow, SimEvents®, Simulink Test™

Description

The Message Viewer block displays messages or events between certain blocks during
simulation. The blocks that you can display messages and events for are called lifeline
blocks and include:

• Subsystems
• Stateflow charts
• Blocks that contain messages, for example, Stateflow charts.

Parameters

History

Specify maximum number of events to keep in viewer.

Settings

Default: 5000

More About
• “Work with Message Viewer”

2-6

 Message Viewer

Introduced in R2015b

2-7

2 Block Reference

State Transition Table

Represent modal logic in tabular format

Library

Stateflow

Description

Use this block when you want to represent modal logic in tabular format. The State
Transition Table block uses only MATLAB as the action language.

State Transition Table Editor

If you double-click the State Transition Table block in sflib, the State Transition Table
Editor shows the default layout of state-to-state transitions.

2-8

 State Transition Table

Using the State Transition Table Editor, you can:

• Add states and enter state actions
• Add hierarchy among your states
• Enter conditions and actions for state-to-state transitions
• Specify default transitions, inner transitions, and self-loop transitions
• Add input or output data and events
• Set breakpoints for debugging
• Run diagnostics to detect parser errors
• View auto-generated content as you edit the table

For more information about the State Transition Table Editor, see “State Transition
Table Operations” in the Stateflow documentation.

Adding Data and Events

You can add data and events from the State Transition Table Editor:

2-9

2 Block Reference

Element Menu Description

Inputs and
outputs

Chart > Add Inputs & Outputs
> Data Input from Simulink

Chart > Add Inputs & Outputs
> Data Output to Simulink

You can add inputs from the model
and outputs to the model.

Data Chart > Add Other Elements You can add these types of data:

• Local
• Constant
• Parameter
• Data store memory

Input
events

Chart > Add Inputs & Outputs
> Event Input from Simulink

An input event causes a State
Transition Table block to execute when
a Simulink control signal changes or
through a Simulink block that outputs
function-call events. You can use one of
these input triggers:

• Rising edge
• Falling edge
• Either rising or falling edge
• Function call

Output
events

Chart > Add Inputs & Outputs
> Event Output to Simulink

A output event triggers a function call
to a subsystem. You can use one of
these output triggers:

• Function call
• Either rising or falling edge

For more information, see “Create a
Function-Call Subsystem”
.

2-10

 State Transition Table

Data Type Support

The State Transition Table block accepts input signals of any data type that Simulink
supports, including fixed-point and enumerated data types.

Parameters

For a description of the block parameters, see the Subsystem block reference page.

Characteristics

Direct Feedthrough Yes
Sample Time Specified in the Sample time parameter
Scalar Expansion N/A
Dimensionalized Yes
Zero-Crossing Detection Yes, if enabled for continuous-time systems

For more information, see “When to Enable
Zero-Crossing Detection”.

Introduced in R2012b

2-11

2 Block Reference

Truth Table
Represent logical decision-making behavior with conditions, decisions, and actions

Library

Stateflow

Description

The Truth Table block is a truth table function that uses MATLAB as the action
language. Use this block when you want to use truth table logic directly in a Simulink
model. This block requires a Stateflow license.

When you add a Truth Table block directly to a model instead of calling truth table
functions from a Stateflow chart, these advantages apply:

• It is a more direct approach, especially if your model requires only a single truth
table.

• You can define truth table inputs and outputs to have inherited types and sizes.

The Truth Table block works with a subset of the MATLAB language that is optimized
for generating embeddable C code. This block generates content as MATLAB code. As
a result, you can take advantage of other tools to debug your Truth Table block during
simulation.

For purely logical behavior, truth tables are easier to program and maintain than
graphical functions. Truth tables also provide diagnostics that indicate whether you
have too few (underspecified) or too many (overspecified) decisions for the conditions you
specify.

The following model, sf_climate_control, shows a home environment controller that
attempts to maintain a selected temperature and humidity. The model has a Truth Table

2-12

 Truth Table

block, ClimateController, that responds to changes in room temperature (input t)
and humidity (input h).

Truth Table Editor

If you double-click the Truth Table block in sf_climate_control, the Truth Table
Editor opens to display its conditions, actions, and decisions. Here is the display for the
Truth Table block named ClimateController.

2-13

2 Block Reference

The inputs t and h define the conditions, and the outputs heater, cooler, and
humidifier define the actions for this Truth Table block.

Using the Truth Table Editor, you can:

• Enter and edit conditions, actions, and decisions
• Add or modify Stateflow data and ports using the Ports and Data Manager
• Run diagnostics to detect parser errors
• View generated content after simulation

2-14

 Truth Table

For more information about the Truth Table Editor, see “Truth Table Editor Operations”.

Ports and Data Manager

To add or edit data in a Truth Table block, open the Ports and Data Manager by selecting
Add > Edit Data/Ports in the Truth Table Editor.

Using the Ports and Data Manager, you can add these elements to a Truth Table block.

Element Tool Description

Data You can add these types of data:

• Local
• Constant
• Parameter
• Data store memory

Input trigger An input trigger causes a Truth Table block
to execute when a Simulink control signal
changes or through a Simulink block that outputs
function-call events. You can use one of these
input triggers:

• Rising edge
• Falling edge
• Either rising or falling edge
• Function call

For more information, see “Define Events”.
Function-call
output

A function-call output triggers a function call to
a subsystem. For more information, see “Create
a Function-Call Subsystem” in the Simulink
documentation.

2-15

2 Block Reference

Data Type Support

The Truth Table block accepts signals of any data type that Simulink supports, including
fixed-point and enumerated data types.

For a discussion of data types that Simulink supports, refer to the Simulink
documentation.

Parameters

For a description of the block parameters, see the Subsystem block reference page in the
Simulink documentation.

Characteristics

Direct Feedthrough Yes
Sample Time Sample based
Scalar Expansion N/A
Dimensionalized Yes
Zero-Crossing Detection No

Introduced before R2006a

2-16

